
B State space representation of the model

Presented here are the details for the state-space representation of equation (11) as specified

by the equations (5)-(10), for p = 1, r = 3, and a single quarterly variable (yQt is of dimension

1 as in the benchmark model):
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where εt = (ε1,t, ε2,t, . . . , εn,t)
′

and et = (e1,t, e2,t, . . . , en,t)
′
.

The block-specific factor structure further implies that

Λ =

(
ΛN,G ΛN,N 0
ΛR,G 0 ΛR,R

)
, ΛQ = (ΛQ,G 0 ΛQ,R) ,

ft =

 fGt
fNt
fRt

 , A1 =

 A1,G 0 0
0 A1,N 0
0 0 A1,R

 , Q =

 QG 0 0
0 QN 0
0 0 QR

 .

Hence, the parameters of the model are:

θ = (µ, µ̃Q, vec(ΛN,G)′, vec(ΛN,N )′, vec(ΛR,G)′, vec(ΛR,R)′,ΛQ,G,ΛQ,R, A1,G, A1,N , A1,R,

QG, QN , QR, α1, . . . , αn, αQ, σ1, . . . , σn, σQ)′.

The state space representation can be easily modified to include an arbitrary number

of quarterly variables nQ (e.g., the model with disaggregated data contains six quarterly

variables). In that case, yQt , µ̃Q, εQt and eQt will be vectors of length nQ. ΛQ will be a



matrix of size nQ × r and αQ will be a nQ × nQ diagonal matrix. Finally, the scalars in the

lines of Z(θ) and T (θ) corresponding to yQt and εQt need to be replaced by nQ × nQ identity

or zero matrices.

C EM algorithm

The parameters θ of the state-space form of equation (12) are estimated by the expectation

maximization (EM) algorithm. The algorithm is a popular solution to problems for which

latent or missing data yield a direct maximization of the likelihood function intractable or

computationally difficult.13 The basic principle behind the EM is to write the likelihood in

terms of observable as well as latent variables (in our case, in terms of x̄t and ξ̄t, t = 1, . . . , Tv =

maxi Ti,v) and, given the available data Ωv,
14 obtain the maximum likelihood estimates in a

sequence of two alternating steps. Precisely, iteration j+1 would consist of the following steps:

• E-step - the expectation of the log-likelihood conditional on the data is calculated using

the estimates from the previous iteration, θ(j),

• M-step - the new parameters, θ(j + 1), are estimated through the maximization of the

expected log-likelihood (from the previous iteration) with respect to θ.

Below we provide the details of the implementation of the EM algorithm for the state-space

representation of equation (12) (based on the results in Bańbura and Modugno, 2010).

We first estimate µ and µ̃Q by sample means and use the de-meaned data throughout the

EM steps.

To deal with missing observations in x̄t we follow Bańbura and Modugno (2010) and intro-

duce selection matrices Wt and WQ
t . They are diagonal matrices of size n and 1, respectively,

with 1s corresponding to the nonmissing values in xt and yQt , respectively.

For the sake of simplicity, we first consider the case without restrictions on Λ, ΛQ, A1 and

Q implied by block-specific factors.

The maximization of the expected likelihood (M-step) with respect to θ in the (r + 1)-

iteration would yield the following expressions:

• The matrix of loadings for the monthly variables:
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13See Dempster, Laird, and Rubin (1977) for a general EM algorithm and Shumway and Stoffer (1982) or Watson
and Engle (1983) for application to state-space representations.

14Ωv ⊆ {y1, . . . , yTv} because some observations in yt are missing.



• The matrix of loadings for the quarterly variables:
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3εQt−2 + 2εQt−3 + εQt−4. The unrestricted row vector of factor loadings for yQt is given by
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For the restricted Λ̄Q = (ΛQ 2ΛQ 3ΛQ 2ΛQ ΛQ) it holds that CΛ̄′Q = 0 with

C =


Ir − 1

2Ir 0 0 0
Ir 0 − 1

3Ir 0 0
Ir 0 0 − 1

2Ir 0
Ir 0 0 0 −Ir

 .
Consequently the restricted Λ̄Q is given by:
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• The autoregressive coefficients in the factor VAR:
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• The covariance matrix in the factor VAR:

Q(j + 1) =
1

T

(
T∑
t=1

Eθ(j)
[
ftf
′
t |Ωv

]
−A1(j + 1)

T∑
t=1

Eθ(j)
[
ft−1f

′
t |Ωv

])
. (15)

• The autoregressive coefficients in the AR representation for the idiosyncratic component

of the monthly variables:
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i = 1, . . . , n,Q.

• The variance in the AR representation for the idiosyncratic component of the monthly

variables:
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The conditional expectations (the E-step) in the expressions above are computed using

the Kalman smoother on the state-space representation of equation (12) with the previous

iteration parameters θ(j). The initial parameters θ(0) are obtained on the basis of principal

components analysis (in the spirit of the two-step method of Doz, Giannone, and Reichlin,

2006b).

To account for the restrictions imposed by group-specific factors, we would split the param-

eters in Λ into ΛN = (ΛN,G ΛN,N ) and ΛR = (ΛR,G ΛR,R) and obtain the j + 1-iteration



of ΛN by modifying the formula in equation (13) as
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where fG,Nt = (fG
′

t fN
′

t )′, xNt and εNt are the subvectors of xt and εt containing only nominal

variables and idiosyncratic components, respectively. WN
t can be obtained from Wt by dis-

carding all the rows and columns corresponding to the real data. The updating formulas for

ΛR can be obtained in an analogous fashion. To obtain restricted versions of A1 and Q we

can use equations (14) and (15) for each of the factors fGt , fNt , fRt , separately.


