Big data in macroeconomics Lucrezia Reichlin London Business School and now-casting economics Itd

COEURE workshop Brussels 3-4 July 2015

WHAT IS BIG DATA IN ECONOMICS?

Frank Diebold claimed to have introduced the term in econometrics and statistics

"I stumbled on the term Big Data innocently enough, via discussion of two papers that took a new approach to macro-econometric dynamic factor models (DFMs), Reichlin (2003) and Watson (2003), presented back-to-back in an invited session of the 2000 World Congress of the Econometric Society"

3 IDEAS IN THE RESEARCH PROGRAM THAT WATSON AND I PRESENTED AT THE 2000 SEATTLE WORLD CONGRESS

1. There is more data around than what is exploited in standard macro models

Examples of data potentially interesting – but many more

- -- micro data: does heterogeneity matter?
- -- conjunctural indicators used in long tradition of understanding/dating business cycles – typically available at higher frequency than national account, possibly more timely
- 2. Economic data are correlated (business cycle)

3. In developing models including large number of series need to understand what one is capturing when increasing the sample size in both n and t dimension: How should we think about convergence of estimators in this world? How should we think of the principle of parsimony in this world? [n,T asymptotic]

UNDERSTANDING THESE ISSUES IS STILL UNFINISHED BUSINESS BOTH FROM A THEORY AND EMPIRICAL POINT OF VIEW

THE PROBLEM OF THE CURSE OF DIMENSIONALITY

- In large models there is a proliferation of parameters that is likely to lead to high estimation uncertainty
- As we increase complexity, the number of parameters to estimate increases and so does the variance (estimation uncertainty)
- Predictions based on traditional methods are poor or unfeasible if the number of predictors (n) is large relative to the sample size (T)
 Why?
- The sample variance is inversely proportional to the degrees of freedom sample size minus no. of parameters
- When no. of parameters becomes large, the d.f. go to zero or become negative precision of the estimates deteriorate

This is the curse of dimensionality!

FACTOR MODELS WAS THE SOLUTION WE STUDIED AT THE TIME ...

Insight of early work

- curse of dimensionality problem can be solved if there are few common sources of variation in the data
- limit complexity due to proliferation of parameters by focusing on few sources of variations (common factors)
- Reasonable if data are characterized by strong collinearity: eg business cycles

Correlation in macro data an old insight from the 1970s (from about 10 series to about 100)

Fraction of Variance Explained by 1- and 2-Factor Models

	Sargent and Sims		Giannone-Reichlin-Sal	
Series	1 Factor	2 Factors	1 Factor	2 Factors
Avg. Weekly Hours	0.77	0.80	0.49	0.61
Layoffs	0.83	0.85	0.72	0.82
Employment	0.86	0.88	0.85	0.91
Unemployment	0.77	0.85	0.74	0.82
Industrial Production	0.94	0.94	0.88	0.93
Retail Sales	0.46	0.69	0.33	0.47
New Orders Durables	0.67	0.86	0.65	0.74
Sensitive Material Prices	0.19	0.74	0.53	0.60
Wholesale Prices	0.20	0.69	0.34	0.67
M1	0.16	0.20	0.15	0.30
Net Bus. Formation	0.42	0.46	NA	NA

INFERENCE IN LARGE MODELS – n, T ASYMPTOTIC

• The problem:

how many variables can we handle for a given sample size? How does the estimate behaves as the no. of parameters increase?
Questions that could not be handled with traditional approach to asymptotic which keeps the number of parameters fixed

- In a series of papers we developed a new approach to asymptotic in the n and T dimension
- We made a first step: under some conditions (co-movements) we can estimate large models consistently Derive consistency results for $n,T \rightarrow \infty$ in large factor models
- Estimators: principal components early work
- Later: show n,T consistency for quasi max likelihood

But why only considering factor models?

Factor analysis is a particular way to limit parameter estimation uncertainty

Alternative idea: limit estimation uncertainty via shrinkage -

Penalized regression:

min[RSS(model) + λ (Model Complexity)]

Reduce variance and introduce bias

Bayesian is natural way to go ...

Penalized regression can be reinterpreted a Bayesian regression with normal prior

The Bayesian Solution: Mixed Estimation (Stein, 1956)

Data	+	Prior
(Complex/Rich)		(Parsimonious/Naive)

Stable and reliable estimation of complex and large model if dimension of the problem is finite [again comovements]

De Mol, Giannone and Reichlin, JoE 2008:

- (n,T) consistency at any rates normal prior single regression
- Study empirically forecasting performance of Lasso, ridge and PC

INSIGHT

when data are correlated (macro) alternative methods have similar performance

Example: forecasting industrial production 131 monthly series for the US economy

Consider:

- Ridge regression
- Lasso regression
- Principal component

Results: forecasts correlated, performance similar, Lasso variable election unstable

Alternative forecasts (130 predictors)

Large Bayesian VARs

Bayesian regression in a dynamic system of simultaneous equations had been applied in macro for small models since the 80s

(B-VAR literature a la Doan, Litterman and Sims)

But results in De Mol et al. suggested that one could estimate VAR with many variables

- By shrinking appropriately (in relation to the sample size) one can learn from the data and avoid over-fitting
- Many successful applications: impulse response functions, counterfactuals, stress tests

Monetary VAR with 40 variables Much used for policy analysis at the ECB

More empirical experience with big data in economics

- One of the most successful application of big data in economics has been *now-casting*: the real time monitoring of the "rich" data flow
- Basic idea of now-casting:
- Follow the calendar of data publication
- > update now-cast almost in continuous time
- corresponding to each release there will be a model based "surprise" that move the now-cast of all variables and the synthetic signal on the state of the economy
- THIS IS WHAT THE MARKET INFORMALLY DOES!

Conjuctural information: This Week

	Jun 17 -	Jun 23							Fil
	Date	<u>10:07am</u>	Currency	Impact		Detail	Actual	Forecast	Previou
	Sun Jun 17								
	Mon	4:00pm	USD	~~	NAHB Housing Market Index		29	28	28∢
	5011 10	Day 1	ALL		G20 Meetings				
	Tue	2:30pm	USD		Building Permits	2	0.78M	0.73M	0.72M
	501119	2:30pm	USD	~~~	Housing Starts	2	0.71M	0.72M	0.74M4
		Day 2	ALL		G20 Meetings	2			
	Wed	4:30pm	USD	~~	Crude Oil Inventories		2.9M	-1.0M	-0.2M
	Jun 20	6:32pm	USD		FOMC Statement	1			
		6:32pm	USD	~	Federal Funds Rate	1	<0.25%	<0.25%	<0.25%
		8:00pm	USD		FOMC Economic Projections				
		8:15pm	USD		FOMC Press Conference				
	Thu	2:30pm	USD		Unemployment Claims		387K	381K	389K4
Jun	Jun 21	3:00pm	USD	~~~	Flash Manufacturing PMI		52.9	53.4	54.04
		4:00pm	USD		Existing Home Sales		4.55M	4.58M	4.62M
		4:00pm	USD		Philly Fed Manufacturing Index		-16.6	0.7	-5.8
		4:00pm	USD	~~	CB Leading Index m/m		0.3%	0.2%	-0.1%
		4:00pm	USD	~~	HPI m/m		0.8%	0.5%	1.6%4
		4:30pm	USD	m	Natural Gas Storage		62B	64B	67B

Conjuctural information: Next Week

Jun 24 -	Jun 30							Fil
Date	<u>10:08am</u>	Currency	Impact		Detail	Actual	Forecast	Previous
Sun Jun 24								
Mon Jun 25	▶ 4:00pm	USD		New Home Sales			347K	343K
Tue	3:00pm	USD		S&P/CS Composite-20 HPI y/y			-2.4%	-2.6%
5011 20	4:00pm	USD	**	CB Consumer Confidence			64.0	64.9
	4:00pm	USD	m	Richmond Manufacturing Index			5	4
Wed	2:30pm	USD	-	Core Durable Goods Orders m/m	1		1.0%	-0.9%4
Juli 27	2:30pm	USD	~	Durable Goods Orders m/m	2		0.5%	0.0%4
	4:00pm	USD	-	Pending Home Sales m/m	1		1.3%	-5.5%
	4:30pm	USD		Crude Oil Inventories	2			2.9M
Thu	2:30pm	USD	-	Unemployment Claims			385K	387K
Jun 28	2:30pm	USD	~	Final GDP q/q			1.9%	1.9%
	2:30pm	USD		Final GDP Price Index q/q			1.7%	1.7%
	4:30pm	USD	~	Natural Gas Storage				62B
	5:30pm	USD	~	FOMC Member Pianalto Speaks				
Fri	2:30pm	USD		Core PCE Price Index m/m	1		0.2%	0.1%
Jun 29	2:30pm	USD	~	Personal Spending m/m			0.1%	0.3%
	2:30pm	USD		Personal Income m/m	2		0.3%	0.2%
	3:45pm	USD	~	Chicago PMI	1		53.1	52.7
	3:55pm	USD	m	Revised UoM Consumer Sentiment	1		74.3	74.1

The structure of the problem is non standard

It is a big data problem but in addition:

- 1. Mixed frequency and time aggregation for stocks and flow variables
- 2. Non synchronous calendar
- 3. Missing observations

Problems largely solved by recent research: see our Holland Handbook chapter on now-casting

- Many available data such as surveys are valuable because of their timeliness
- But need to understand details of the structure of the information flow problem
- Cannot simply borrowing from other disciplines!

What have learned in years of experience?

- Timeliness matters
- Many data are relevant to obtain early signals on economic activity, increasingly also used by statistical agencies
- In particular: surveys, weekly conjunctural data
- Robust models are relatively simple
- An automatic mechanical model does as well as judgment but is as timely as you want and does not get influenced by moods

Do timely data help? Evolution of the MSFE in relation to the data flow

Do timely data help? Evolution of the MSFE in relation to the data flow

Many standard data still unexploited But many data at high frequency are informative US example: model can run even if government shutdown (Jim Stock presentation)

	Series	Frequency	Publication delay
			(in days after ref period)
1	Nominal Gross Domestic Product	quarterly	28
2	Gross Domestic Product Deflator	quarterly	29
3	Industrial Production Index	monthly	14
4	Purchasing Manager Index, Manufacturing	monthly	з
5	Real Disposable Personal Income	monthly	29
6	Unemployment Rate	monthly	7
7	All Employees: Total nonfarm payroll	monthly	7
8	Personal Consumption Expenditures	monthly	29
9	Housing starts	monthly	19
10	Single Family Homes Sales	monthly	26
11	Manufacturers' New Orders: Durable Goods	monthly	27
12	Producer Price Index: Finished Goods	monthly	13
13	Consumer Price Index for All Urban Consumers: All Items	monthly	14
14	Imports	monthly	43
15	Exports	monthly	43
16	Philadelphia survey, General Business Conditions	monthly	-10
17	Retail and Food Services Sales	monthly	14
18	Conference board consumer confidence	monthly	-5
19	Bloomberg consumer comfort index	weekly	4
20	Initial Claims	weekly	4
21	Appliances Production Composite Index	weekly	14
22	Total OII and Gas Rigs in Operation (Onshore and Offshore)	wwekty	14
23	Coal Production Index	weekly	14
24	Crude Oil and Lease Condensate Production	weekly	14
25	Distillate Fuel Oil Production	weekly	14
26	Total Motor Gasoline Production	weekly	14
27	Kerosene-Type Jet Fuel Production	weekly	14
28	Residual Fuel Oil Production	weekly	14
29	Crashed Stone, Sand and Gravel Production Index	weekly	14
30	Western Sorftwood Lumber Production Index	weekty	14
31	Organic Chemicals Production Index	weekly	14
32	Steel Mill Products Output	weekly	14
33	Basic Iron and Steel Production	weekty	14
34	Meat Production Composite Index	weekly	14
35	Trucks Production	weekly	7
36	Autos Production	weekty	7
37	Electric Utilities Output	weekly	10
38	Total Ballroad Traffic	weekly	10
39	Total Railroad Traffic excl. Intermodeal	weekly	10
40	Total Railroad Intermodal Traffic	weekty	10
41	Total Auto Incentives (Cash Back + Financing)	weekly	7
42	Total Auto Incentives (Cash Back Only)	weekly	7
43	Car Dealer Executives Survey	weakty	7
44	Autos Transactions Count	weekly	7
45	Baltic Dry Index	daily	3
46	S&P 500 Index	daily	4
47	Crude OII: West Texas Intermediate (WTI) - Cushing, Oklahoma	daily	1
48	10-Year Treasury Constant Maturity Rate	daily	1
49	3-Month Treasury Bill: Secondary Market Rate	daily	1
50	Trade Weighted Exchange Index: Major Currencies	daily	1

What about google data ?

- Some evidence mostly in sample, mostly without conditioning on standard easily available data
- Need to evaluate on the basis of a model that has all relevant details about the information problem
- Be rigorous on evaluation methods to avoid data mining (outof sample, backcasting)
- Many standard easily available data still unexploited!

Smoothed monthly data constructed from weekly data

Unemployment (FRED); Jobs (GOOGLE)

Unemployment and google query "jobs" correlated...

Unemployment rate (FRED) and Jobs (Google)

Smoothed weekly data

Initial Claims (FRED); Jobs (GOOGLE)

... but also correlated with initial claims available by standard sources

Weekly Initial Claims (FRED) and Jobs (Google)

Conclusions (1)

- Data are important for research and policy
- Macroeconomics had a tradition of using many data for business cycle analysis – forgotten and now revamped
- Why? More focus on empirical research; new topics: heterogeneity, information, timeliness, macro-finance
- Traditional data sources available but unexploited, US ahead of the game
- Warning! Don't blindly import from other fields ... economic data structures need research tools specifically designed

Conclusions (2)

- New sources such as google potentially useful but the case has not yet been convicincely made. More research is needed but details matter ...
- Methodologically need to develop models which can deal with the curse of dimensionality problem – Bayesian shrinkage is the natural way to go, need to think about identification in an environment in which data are highly correlated
- Last 20 years some useful ideas
- Lots more need to be done