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WHAT IS BIG DATA IN ECONOMICS?

Frank Diebold claimed to have introduced the term in econometrics and
statistics

“I stumbled on the term Big Data innocently enough, via discussion of two
papers that took a new approach to macro-econometric dynamic factor
models (DFMs), Reichlin (2003) and Watson (2003), presented back-to-back in
an invited session of the 2000 World Congress of the Econometric Society”



3 IDEAS IN THE RESEARCH PROGRAM THAT WATSON AND |
PRESENTED AT THE 2000 SEATTLE WORLD CONGRESS

1. Thereis more data around than what is exploited in standard macro
models

Examples of data potentially interesting — but many more ....

-- micro data: does heterogeneity matter?

-- conjunctural indicators — used in long tradition of
understanding/dating business cycles — typically available at higher
frequency than national account, possibly more timely

2. Economic data are correlated (business cycle)

3. Indeveloping models including large number of series need to
understand what one is capturing when increasing the sample size in both n
and t dimension: How should we think about convergence of estimators in
this world? How should we think of the principle of parsimony in this world?
[n,T asymptotic]

UNDERSTANDING THESE ISSUES IS STILL UNFINISHED BUSINESS BOTH FROM A
THEORY AND EMPIRICAL POINT OF VIEW



THE PROBLEM OF THE CURSE OF DIMENSIONALITY

* Inlarge models there is a proliferation of parameters that is likely to
lead to high estimation uncertainty

* As we increase complexity, the number of parameters to estimate
increases and so does the variance (estimation uncertainty)

* Predictions based on traditional methods are poor or unfeasible if
the number of predictors (n) is large relative to the sample size (T)

Why?
 The sample variance is inversely proportional to the degrees of
freedom - sample size minus no. of parameters

* When no. of parameters becomes large, the d.f. go to zero or
become negative — precision of the estimates deteriorate

This is the curse of dimensionality!



FACTOR MODELS WAS THE SOLUTION WE STUDIED AT
THE TIME ...

Insight of early work

e curse of dimensionality problem can be solved if
there are few common sources of variation in the
data

* |limit complexity due to proliferation of parameters
by focusing on few sources of variations (common
factors)

 Reasonable if data are characterized by strong
collinearity: eg business cycles



Correlation in macro data
an old insight from the 1970s
(from about 10 series to about 100)

Fraction of Variance Explained by 1- and 2-Factor Models

Sargent and Sums

Giannone-Reichlin-Sala

Series 1 Factor | 2 Factors 1 Factor 2 Factors
Avg. Weekly Hours 0.77 0.80 0.49 0.61
Layotfs 0.83 0.85 0.72 0.82
Employment 0.86 0.88 0.85 0.91
Unemployment 0.77 0.85 0.74 0.82
Industrial Production 0.94 0.94 0.88 0.93
Retail Sales 0.46 0.69 0.33 0.47
New Orders Durables 0.67 0.86 0.65 0.74
Sensitive Material Prices 0.19 0.74 0.53 0.60
Wholesale Prices 0.20 0.69 0.34 0.67
M1 0.16 0.20 0.15 0.30
Net Bus. Formation 0.42 0.46 NA NA




INFERENCE IN LARGE MODELS —n, TASYMPTOTIC

* The problem:

how many variables can we handle for a given sample size? How
does the estimate behaves as the no. of parameters increase?

Questions that could not be handled with traditional approach to
asymptotic which keeps the number of parameters fixed

In a series of papers we developed a new approach to asymptotic in
the n and T dimension

We made a first step: under some conditions (co-movements) we
can estimate large models consistently - Derive consistency
results for n,T = o= in large factor models

e Estimators: principal components — early work
* Later: show n,T consistency for quasi max likelihood



But why only considering factor models?

Factor analysis is a particular way to limit parameter estimation
uncertainty

Alternative idea: limit estimation uncertainty via shrinkage —

Penalized regression:

min[ RSS(model) + A (Model Complexity)]

Reduce variance and introduce bias



Bayesian is natural way to go ...

Penalized regression can be reinterpreted a Bayesian regression
with normal prior
The Bayesian Solution: Mixed Estimation (Stein, 1956)

Data + Prior
(Complex/Rich) (Parsimonious/Naive)

Stable and reliable estimation of complex and large model if
dimension of the problem is finite [again comovements]

De Mol, Giannone and Reichlin, JoE 2008:
 (n,T) consistency at any rates — normal prior single regression
e Study empirically forecasting performance of Lasso, ridge and PC



INSIGHT
when data are correlated (macro) alternative methods
have similar performance

Example: forecasting industrial production
131 monthly series for the US economy

Consider:

* Ridge regression

* Lasso regression

* Principal component

Results: forecasts correlated, performance similar, Lasso variable
election unstable



Alternative forecasts (130 predictors)
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Large Bayesian VARs

Bayesian regression in a dynamic system of simultaneous
equations had been applied in macro for small models since
the 80s

(B-VAR literature a la Doan, Litterman and Sims)

But results in De Mol et al. suggested that one could estimate
VAR with many variables

By shrinking appropriately (in relation to the sample size) one
can learn from the data and avoid over-fitting

Many successful applications: impulse response functions,
counterfactuals, stress tests



Much used for policy analysis at the ECB

Monetary VAR with 40 variables
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More empirical experience with big data in
economics

* One of the most successful application of big data in
economics has been now-casting: the real time monitoring
of the “rich” data flow

e Basic idea of now-casting:
» follow the calendar of data publication
» update now-cast almost in continuous time

» corresponding to each release there will be a model based
“surprise” that move the now-cast of all variables and the
synthetic signal on the state of the economy

* THIS IS WHAT THE MARKET INFORMALLY DOES!



Conjuctural information: This Week
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Date

Sun
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10:07am Currency Impact
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MAHB Housing Market Index
G20 Meetings

Building Permits

Housing Starts

G20 Meetings

Crude Oil Inventories

FOMC Statement

Federal Funds Rate

FOMC Economic Projections
FOMC Press Conference
Unemployment Claims

Flash Manufacturing PMI
Existing Home Sales

Philly Fed Manufacturing Index
CB Leading Index m/m

HPI m/m

Matural Gas Storage

Detail
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Actual

29

0.78M

0.71M

2.9M

<0.25%

387K

52.9
4.55M
-16.6
0.3%
0.8%

62B

Forecast

28

0.73M

0.72M

-1.0M

<0.25%

381K
53.4
4.58M
0.7
0.2%

0.5%

Previou
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-0.2M
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3B9K4
54.04
4.62M
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Conjuctural information: Next Week

Jun 24 - Jun 30

2:30pm UsD Personal Spending m/m 0.1% 0.3%

2:30pm Usp Personal Income m/m 0.3% 0.2%

3:45pm uUsD Chicago PMI 53.1 52.7

Date 10:08am Currency Impact Detail Actual Forecast Previous
Jun 24
J:?;s p 4:00pm usD | New Home Sales = 347K 343K
JJ:;G 3:00pm usp M S&P/CS Composite-20 HPI y/y = -2.4% -2.6%
4:00pm uspD - CB Consumer Confidence e | 64.0 64.9
4:00pm usp m Richmond Manufacturing Index = 5 4
Jx:f% 2:30pm uUspo - Core Durable Goods Orders m/m =4 1.0% -0.9%
2:30pm uso Durable Goods Orders m/m = 0.5% 0.0%<
4:00pm uso - Pending Home Sales m/m | 1.3% -5.5%
4:30pm usD [haes Crude Oil Inventories = 2.9M
J::;S 2:30pm uUsD il | Unemployment Claims = 385K 387K
2:30pm usp Final GDP g/q = 1.9% 1.9%
2:30pm UsoD ] Final GDP Price Index q/q = 1.7% 1.7%
4:30pm usD a2l Natural Gas Storage & 628
5:30pm usD FOMC Member Pianalto Speaks
Juﬁl’izg 2:30pm uspo Core PCE Price Index m/m 0.2% 0.1%
=5
]
e

Pararar i ar

3:55pm uUsp Revised UoM Consumer Sentiment 74.3 74.1



The structure of the problem is non standard

It is a big data problem but in addition:

1. Mixed frequency and time aggregation for stocks and flow variables
2.  Non synchronous calendar
3. Missing observations

Problems largely solved by recent research: see our Holland Handbook chapter on
now-casting

* Many available data — such as surveys - are valuable because of their
timeliness

e But need to understand details of the structure of the information flow
problem

e Cannot simply borrowing from other disciplines!
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What have learned in years of experience?

Timeliness matters

Many data are relevant to obtain early sighals on economic
activity, increasingly also used by statistical agencies

In particular: surveys, weekly conjunctural data
Robust models are relatively simple

An automatic mechanical model does as well as judgment but
is as timely as you want and does not get influenced by
moods



Do timely data help? Evolution of the

MSFE In relation to the data flow
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Many standard data still unexploited ..... But many
data at high frequency are informative

US example: model can run even if government
shutdown (Jim Stock presentation)
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What about google data ?

Some evidence — mostly in sample, mostly without
conditioning on standard easily available data

Need to evaluate on the basis of a model that has all relevant
details about the information problem

Be rigorous on evaluation methods to avoid data mining (out-
of sample, backcasting)

Many standard easily available data still unexploited!



Smoothed monthly data constructed from weekly data

Unemployment (FRED); Jobs (GOOGLE)

Unemployment and google query “jobs”correlated...

Unemployment rate (FRED) and Jobs (Google)
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Smoothed weekly data

Initial Claims (FRED); Jobs (GOOGLE)

... but also correlated with initial claims available by standard

sources

Weekly Initial Claims (FRED) and Jobs (Google)
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Conclusions (1)

Data are important for research and policy

Macroeconomics had a tradition of using many data for
business cycle analysis — forgotten and now revamped

Why? More focus on empirical research; new topics:
heterogeneity, information, timeliness, macro-finance

Traditional data sources available but unexploited, US
ahead of the game

Warning! Don’t blindly import from other fields ...
economic data structures need research tools specifically
designed



Conclusions (2)

New sources such as google potentially useful but the case
has not yet been convicincely made. More research is needed
but details matter ...

Methodologically need to develop models which can deal
with the curse of dimensionality problem — Bayesian
shrinkage is the natural way to go, need to think about
identification in an environment in which data are highly
correlated

Last 20 years some useful ideas
Lots more need to be done



